¿Qué es la luz?

Esta inocente pregunta ha causado grandes quebraderos de cabeza a los más importantes científicos de los últimos siglos. Christian Huygens propuso, en su Tratado de la Luz, publicado en 1678, que la luz tenía una naturaleza ondulatoria, igual que el sonido o las ondas en la superficie del agua. Esta idea también fue defendida por Robert Hooke, lo que le llevó a enfrentarse con el gran Isaac Newton, partidario de un modelo corpuscular de la luz, que quedaría recogido en su tratado Opticks, de 1704. Para Newton la luz estaba formada por pequeñísimas partículas que avanzan a través de un medio gracias a la propia inercia de su movimiento, lo cual podía explicar fenómenos como las sombras de los cuerpos, la reflexión o la refracción, bajo el supuesto de que su velocidad aumentaba al pasar de un medio a otro de mayor densidad.

naturaleza-liuz

La relevancia de la figura de Newton hizo que su teoría de la luz dominase el panorama científico hasta que unos cien años después, en 1801, Thomas Young demostrase que la luz tenía un comportamiento ondulatorio, ya que su famoso experimento de la doble rendija mostraba cómo el fenómeno de interferencia, característico de las ondas, también lo experimentaba la luz:

interferencia-luz-young

En los años posteriores otros muchos científicos, como Augustin Fresnel, realizaron experiencias que respaldaban la teoría ondulatoria de la luz, y determinaron, cada vez con más precisión, la velocidad a la que ésta se propagaba. En 1849, el parisino Hippolyte Fizau había atrapado un rayo de luz en un laberinto de espejos y, armado con un delicado mecanismo, logró medir su velocidad en el aire, obteniendo un valor de unos 315 000 000 m/s, que su compatriota Foucault afinó hasta los 298 000 000 m/s. El golpe definitivo a la teoría corpuscular vino cuando se observó que su velocidad disminuía al pasar de un medio a otro de mayor densidad, lo que contradecía las explicaciones de Newton.

A lo largo del siglo XIX se realizaron grandes avances en el conocimiento de los campos eléctricos y magnéticos, que culminaron en el año 1865 cuando el físico James Maxwell unificó los fenómenos eléctricos y magnéticos en una única teoría electromagnética. De ellas se desprendía que las perturbaciones del campo electromagnético se propagaban a una velocidad constante, próxima a los 300 000 000 m/s.

Este valor era sospechosamente cercano al de las mediciones que se habían hecho de la velocidad de la luz. Ante tan asombrosa coincidencia, Maxwell se atrevió a anunciar: la velocidad se aproxima tanto a la de la luz que, según parece, existen poderosas razones para concluir que la propia luz es una perturbación electromagnética que se propaga en forma de ondas a través del campo electromagnético, de acuerdo con las leyes electromagnéticas.

Todas las ondas se pueden describir mediante una expresión llamada ecuación de onda. A partir de las ecuaciones de la teoría electromagnética de Maxwell es posible obtener una ecuación de onda, análoga a la que describe las ondas sonoras, por lo que es posible deducir que:

La luz es una onda electromagnética, ya que se produce por la propagación de una perturbación de un campo eléctrico y un campo magnético simultáneos y perpendiculares entre sí.

800px-Onde_electromagnétique.png

Las ondas electromagnéticas son ondas transversales, ya que las perturbaciones son perpendiculares a su dirección de propagación. Además, los campos eléctrico y magnético están en fase, es decir, ambos alcanzan su valor máximo (o mínimo) simultáneamente. A diferencia de las ondas mecánicas, las ondas electromagnéticas no requieren un medio material para su propagación. Por eso, la luz del Sol llega a la Tierra después de recorrer una gran distancia en el vacío.

Las ondas electromagnéticas que acabamos de definir se caracterizan por los mismos parámetros que las demás ondas, que son la amplitud, el periodo, la frecuencia y la longitud de onda. Cuando hablamos de luz, en general, hacemos referencia a aquellas ondas electromagnéticas que somos capaces de percibir. Al igual que existe un rango de sonidos audibles, la luz visible se corresponde con las ondas electromagnéticas que son capaces de estimular la retina, y son aquellas que tienen una longitud de onda comprendida entre 400 y 700 nm, aproximadamente. En realidad, existen muchísimas ondas o radiaciones electromagnéticas, que en conjunto forman lo que se conoce como espectro electromagnético:

espectro-electromagnetico

P.D.: En el año 1900 Max Planck dio una vuelta de tuerca al estudio de la naturaleza de la luz, abriendo el camino de la mecánica cuántica, aunque esa historia la dejaremos para otro momento…

Anuncio publicitario

Publicado por Enrique Castaños

Graduado en Químicas (UNED) y Máster en Profesor de Secundaria (UBU). Pasión por la ciencia, la divulgación y la enseñanza a través de las plataformas digitales y las redes sociales. Actualmente, imparto Matemáticas, Física y Química y Laboratorio de Ciencias en IES Diego de Siloé (Burgos, España).

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

A %d blogueros les gusta esto: